Copied to
clipboard

G = C23.422C24order 128 = 27

139th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.422C24, C24.312C23, C22.2152+ 1+4, C22:C4.9Q8, C23.19(C2xQ8), C2.28(D4:3Q8), C23.4Q8.7C2, C22.95(C22xQ8), (C23xC4).386C22, (C22xC4).532C23, (C2xC42).537C22, C23.Q8.10C2, C23.7Q8.50C2, C23.8Q8.25C2, C23.65C23:79C2, C23.63C23:75C2, C23.81C23:30C2, C24.C22.25C2, C2.38(C22.45C24), C2.C42.170C22, C2.46(C22.47C24), C2.24(C23.37C23), C2.21(C22.34C24), C2.65(C23.36C23), (C4xC4:C4):81C2, (C2xC4).48(C2xQ8), (C4xC22:C4).57C2, (C2xC4).141(C4oD4), (C2xC4:C4).285C22, C22.299(C2xC4oD4), (C2xC22:C4).503C22, SmallGroup(128,1254)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.422C24
C1C2C22C23C22xC4C23xC4C4xC22:C4 — C23.422C24
C1C23 — C23.422C24
C1C23 — C23.422C24
C1C23 — C23.422C24

Generators and relations for C23.422C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=ca=ac, e2=a, g2=ba=ab, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 388 in 214 conjugacy classes, 100 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C24, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C23xC4, C4xC22:C4, C4xC4:C4, C23.7Q8, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.Q8, C23.81C23, C23.4Q8, C23.422C24
Quotients: C1, C2, C22, Q8, C23, C2xQ8, C4oD4, C24, C22xQ8, C2xC4oD4, 2+ 1+4, C23.36C23, C23.37C23, C22.34C24, C22.45C24, C22.47C24, D4:3Q8, C23.422C24

Smallest permutation representation of C23.422C24
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 37)(6 38)(7 39)(8 40)(13 52)(14 49)(15 50)(16 51)(17 46)(18 47)(19 48)(20 45)(21 43)(22 44)(23 41)(24 42)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)
(1 26)(2 27)(3 28)(4 25)(5 23)(6 24)(7 21)(8 22)(9 54)(10 55)(11 56)(12 53)(13 60)(14 57)(15 58)(16 59)(17 62)(18 63)(19 64)(20 61)(29 52)(30 49)(31 50)(32 51)(33 48)(34 45)(35 46)(36 47)(37 41)(38 42)(39 43)(40 44)
(1 12)(2 9)(3 10)(4 11)(5 39)(6 40)(7 37)(8 38)(13 50)(14 51)(15 52)(16 49)(17 48)(18 45)(19 46)(20 47)(21 41)(22 42)(23 43)(24 44)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(33 62)(34 63)(35 64)(36 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 10 47)(2 48 11 19)(3 20 12 45)(4 46 9 17)(5 58 37 31)(6 32 38 59)(7 60 39 29)(8 30 40 57)(13 43 52 21)(14 22 49 44)(15 41 50 23)(16 24 51 42)(25 35 54 62)(26 63 55 36)(27 33 56 64)(28 61 53 34)
(2 27)(4 25)(5 39)(6 44)(7 37)(8 42)(9 54)(11 56)(14 57)(16 59)(17 33)(18 45)(19 35)(20 47)(21 41)(22 38)(23 43)(24 40)(30 49)(32 51)(34 63)(36 61)(46 64)(48 62)
(1 58 55 50)(2 32 56 16)(3 60 53 52)(4 30 54 14)(5 63 41 47)(6 33 42 19)(7 61 43 45)(8 35 44 17)(9 57 25 49)(10 31 26 15)(11 59 27 51)(12 29 28 13)(18 37 36 23)(20 39 34 21)(22 46 40 62)(24 48 38 64)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,10,47)(2,48,11,19)(3,20,12,45)(4,46,9,17)(5,58,37,31)(6,32,38,59)(7,60,39,29)(8,30,40,57)(13,43,52,21)(14,22,49,44)(15,41,50,23)(16,24,51,42)(25,35,54,62)(26,63,55,36)(27,33,56,64)(28,61,53,34), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,58,55,50)(2,32,56,16)(3,60,53,52)(4,30,54,14)(5,63,41,47)(6,33,42,19)(7,61,43,45)(8,35,44,17)(9,57,25,49)(10,31,26,15)(11,59,27,51)(12,29,28,13)(18,37,36,23)(20,39,34,21)(22,46,40,62)(24,48,38,64)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,10,47)(2,48,11,19)(3,20,12,45)(4,46,9,17)(5,58,37,31)(6,32,38,59)(7,60,39,29)(8,30,40,57)(13,43,52,21)(14,22,49,44)(15,41,50,23)(16,24,51,42)(25,35,54,62)(26,63,55,36)(27,33,56,64)(28,61,53,34), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,58,55,50)(2,32,56,16)(3,60,53,52)(4,30,54,14)(5,63,41,47)(6,33,42,19)(7,61,43,45)(8,35,44,17)(9,57,25,49)(10,31,26,15)(11,59,27,51)(12,29,28,13)(18,37,36,23)(20,39,34,21)(22,46,40,62)(24,48,38,64) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,37),(6,38),(7,39),(8,40),(13,52),(14,49),(15,50),(16,51),(17,46),(18,47),(19,48),(20,45),(21,43),(22,44),(23,41),(24,42),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63)], [(1,26),(2,27),(3,28),(4,25),(5,23),(6,24),(7,21),(8,22),(9,54),(10,55),(11,56),(12,53),(13,60),(14,57),(15,58),(16,59),(17,62),(18,63),(19,64),(20,61),(29,52),(30,49),(31,50),(32,51),(33,48),(34,45),(35,46),(36,47),(37,41),(38,42),(39,43),(40,44)], [(1,12),(2,9),(3,10),(4,11),(5,39),(6,40),(7,37),(8,38),(13,50),(14,51),(15,52),(16,49),(17,48),(18,45),(19,46),(20,47),(21,41),(22,42),(23,43),(24,44),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(33,62),(34,63),(35,64),(36,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,10,47),(2,48,11,19),(3,20,12,45),(4,46,9,17),(5,58,37,31),(6,32,38,59),(7,60,39,29),(8,30,40,57),(13,43,52,21),(14,22,49,44),(15,41,50,23),(16,24,51,42),(25,35,54,62),(26,63,55,36),(27,33,56,64),(28,61,53,34)], [(2,27),(4,25),(5,39),(6,44),(7,37),(8,42),(9,54),(11,56),(14,57),(16,59),(17,33),(18,45),(19,35),(20,47),(21,41),(22,38),(23,43),(24,40),(30,49),(32,51),(34,63),(36,61),(46,64),(48,62)], [(1,58,55,50),(2,32,56,16),(3,60,53,52),(4,30,54,14),(5,63,41,47),(6,33,42,19),(7,61,43,45),(8,35,44,17),(9,57,25,49),(10,31,26,15),(11,59,27,51),(12,29,28,13),(18,37,36,23),(20,39,34,21),(22,46,40,62),(24,48,38,64)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim11111111111224
type+++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2Q8C4oD42+ 1+4
kernelC23.422C24C4xC22:C4C4xC4:C4C23.7Q8C23.8Q8C23.63C23C24.C22C23.65C23C23.Q8C23.81C23C23.4Q8C22:C4C2xC4C22
# reps111113221214162

Matrix representation of C23.422C24 in GL6(F5)

400000
040000
004000
000400
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
040000
100000
000100
004000
000020
000002
,
200000
030000
003000
000200
000001
000010
,
100000
010000
001000
000400
000010
000004
,
300000
020000
001000
000400
000010
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C23.422C24 in GAP, Magma, Sage, TeX

C_2^3._{422}C_2^4
% in TeX

G:=Group("C2^3.422C2^4");
// GroupNames label

G:=SmallGroup(128,1254);
// by ID

G=gap.SmallGroup(128,1254);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*a=a*c,e^2=a,g^2=b*a=a*b,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<